Maximal (k, n)-arc in Projective Plane PG(2, 5)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-nets embedded in a projective plane

We survey some recent results due to myself, Nicola Pace and Gábor P. Nagy. A dual k-net of order n in the finite projective plane PG(2, q) over the finite field GF (q) consists of a k ≥ 3 pairwise disjoint point-sets (components), each of size n, such that every line meeting two distinct components meets each component in precisely one point. Dual k-nets are truly combinatorial objects; nevert...

متن کامل

K-FLAT PROJECTIVE FUZZY QUANTALES

In this paper, we introduce the notion of {bf K}-flat projective fuzzy quantales, and give an elementary characterization in terms of a fuzzy binary relation on the fuzzy quantale. Moreover, we  prove that {bf K}-flat projective fuzzy quantales are precisely the coalgebras for a certain comonad on the category of fuzzy quantales. Finally, we present two special cases of {bf K} as examples.

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

N-Flips in even triangulations on the projective plane

We shall show that any two even triangulations G and G on the projective plane with |V (G)| = |V (G)| ≥ 14 can be transformed into each other by two operations called an N -flip and P2-flip, if and only if both of them are simultaneously 3colorable, or not. c © 2007 Elsevier B.V. All rights reserved.

متن کامل

Quadrangulations and 5-critical Graphs on the Projective Plane

Let Q be a nonbipartite quadrangulation of the projective plane. Youngs [13] proved that Q cannot be 3-colored. We prove that for every 4-coloring of Q and for any two colors a and b, the number of faces F of Q, on which all four colors appear and colors a and b are not adjacent on F , is odd. This strengthens previous results that have appeared in [13, 6, 8, 1]. If we form a triangulation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Garmian University

سال: 2017

ISSN: 2522-3879

DOI: 10.24271/garmian.129